Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Electron. j. biotechnol ; 26: 46-51, Mar. 2017. graf, tab
Article in English | LILACS | ID: biblio-1009650

ABSTRACT

Background: Current commercial production of isomalto-oligosaccharides (IMOs) commonly involves a lengthy multistage process with low yields. Results: To improve the process efficiency for production of IMOs, we developed a simple and efficient method by using enzyme cocktails composed of the recombinant Bacillus naganoensis pullulanase produced by Bacillus licheniformis, α-amylase from Bacillus amyloliquefaciens, barley bran ß-amylase, and α-transglucosidase from Aspergillus niger to perform simultaneous saccharification and transglycosylation to process the liquefied starch. After 13 h of reacting time, 49.09% IMOs (calculated from the total amount of isomaltose, isomaltotriose, and panose) were produced. Conclusions: Our method of using an enzyme cocktail for the efficient production of IMOs offers an attractive alternative to the process presently in use.


Subject(s)
Oligosaccharides/metabolism , Starch/metabolism , Enzymes/metabolism , Isomaltose/metabolism , Oligosaccharides/biosynthesis , Aspergillus niger/enzymology , Temperature , Bacillus/enzymology , beta-Amylase/metabolism , Glycosylation , Liquefaction , alpha-Amylases/metabolism , Fermentation , Glucosidases/metabolism , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration
2.
São Paulo; s.n; 22 ago. 2008. 95 p. ilus, graf.
Thesis in Portuguese | LILACS | ID: lil-508073

ABSTRACT

O amadurecimento dos frutos é um processo caracterizado pela ocorrência de diversas alterações bioquímicas que ocorrem em um curto intervalo de tempo e que são importantes para a qualidade desses alimentos. Na banana uma das características mais importantes é o adoçamento do fruto, que ocorre como resultado da degradação do amido e acúmulo de sacarose. Resultados do nosso grupo apontam a ´BETA` amilase como uma enzima importante no processo de mobilização do amido, o que também é visto em estudos recentes utilizando Arabidopsis thaliana como modelo, os quais mostram que a principal via de degradação do amido transitório presente nas folhas ocorre pela ação da ´BETA`-amilase. Entretanto, em bananas, faltam evidências quanto à funcionalidade de um gene de ´BETA`amilase, parcialmente isolado da polpa do fruto, e que é expresso durante o amadurecimento e que parece ser modulado por hormônios vegetais. Em vista disso, esse trabalho objetivou realizar a caracterização funcional desse gene, a qual permitiu constatar que esse gene codifica, de fato, para uma proteína capaz de ser endereçada aos cloroplastos. Também foi observado que o promotor desse gene contém motivos regulatórios para os mesmos hormônios previamente relacionados com a modulação da expressão desse gene em bananas. Essas novas evidências reforçam a idéia de que o produto desse gene de ´BETA`amilase tem um importante papel no processo de degradação do amido durante o amadurecimento da banana...


Subject(s)
Starch/genetics , Starch/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Gene Expression/genetics , Musa/enzymology , Musa/metabolism , beta-Amylase/physiology , beta-Amylase/genetics , beta-Amylase/metabolism , Enzyme Activation , Enzymes/analysis , Food Analysis , Food Samples
3.
São Paulo; s.n; 27 set. 2007. 152 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-494820

ABSTRACT

A banana é considerada um bom modelo para o estudo da transformação amido-sacarose, já que acumula um alto teor de amido durante o desenvolvimento que é rapidamente degradado durante o amadurecimento. Várias enzimas e provavelmente mais de uma via metabólica estão envolvidas neste processo. Com isso, o objetivo deste trabalho foi estudar as características estruturais dos grânulos, bem como, a atuação das enzimas envolvidas em sua degradação. Os grânulos de amidos foram isolados de bananas controle (não tratadas) e submetidas a diferentes tratamentos: etileno, 1-MCP, frutos mantidos a 13'graus'C e frutos tratados com etileno e mantidos a 13'graus'C. Os resultados obtidos mostraram alta atividade de enzimas 'alfa' e 'beta'-amilases ligadas ao grânulo tanto por ensaios in vitro como por géis de eletroforese contendo amilopectina como substrato...


Subject(s)
Amylopectin , Enzymes/metabolism , Food Chemistry , Musa , alpha-Amylases/metabolism , beta-Amylase/metabolism , Electrophoresis/methods , Microscopy, Electron, Scanning/methods
4.
Indian J Biochem Biophys ; 2007 Aug; 44(4): 223-30
Article in English | IMSEAR | ID: sea-26822

ABSTRACT

The effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism (alpha and beta amylases, sucrose phosphate synthase, sucrose synthase, acid and alkaline invertases) in wheat (Triticum aestivum L.) was investigated in the seedlings of drought-sensitive (PBW 343) and drought-tolerant (C 306) cultivars. The water deficit was induced by adding 6% mannitol (water potential -0.815 Mpa) in the growth medium. The water deficit reduced starch content in the shoots of tolerant seedlings as compared to the sensitive ones, but increased sucrose content in the shoots and roots of tolerant seedlings, indicating their protective role during stress conditions. It also decreased the alpha-amylase activity in the endosperm of seedlings of both the cultivars, but increased alpha and beta amylase activities in the shoots of tolerant ones. Sucrose phosphate synthase (SPS) activity showed a significant increase at 6 days of seedling growth (DSG) in the shoots of stressed seedlings of tolerant cultivar. However, SPS activity in the roots of stressed seedlings of sensitive cultivar was very low at 4 DSG and appeared significantly only at day 6. Sucrose synthase (SS) activity was lower in the shoots and roots of stressed seedlings of tolerant cultivar than sensitive ones at early stage of seedling growth. Higher acid invertase activity in the shoots of seedlings of tolerant cultivar appeared to be a unique characteristic of this cultivar for stress tolerance. Alkaline invertase activity, although affected under water deficit conditions, but was too low as compared to acid invertase activity to cause any significant affect on sucrose hydrolysis. In conclusion, higher sucrose content with high SPS and low acid invertase and SS activities in the roots under water deficit conditions could be responsible for drought tolerance of C 306.


Subject(s)
Carbohydrate Metabolism/physiology , Glucosyltransferases/metabolism , Mannose/chemistry , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Seedlings/enzymology , Sucrose/metabolism , Triticum/enzymology , Water/metabolism , alpha-Amylases/metabolism , beta-Amylase/metabolism , beta-Fructofuranosidase/metabolism
5.
J Environ Biol ; 2005 Apr; 26(2): 197-204
Article in English | IMSEAR | ID: sea-113430

ABSTRACT

Different dilution levels of tannery treated effluent and their corresponding concentration of chromium (Cr6+) were studied in a petridish culture experiment on seed germination and seedling growth in radish (Raphanus sativus L). The different concentrations of Cr6+ (2, 5 and 10 ppm) and treated tannery effluent (10, 25 and 50%) showed reduction in seedling growth and related enzymatic activities with increase in concentration of Cr6+ in treatments and effluent both. The low concentration of chromium (2 ppm) and effluent dilution (10%) showed significant growth reduction separately. At this concentration of chromium and effluent dilution chlorophyll content, amylase, catalase and protein contents remained unchanged while with increase in Cr6+ concentration (>2ppm) and effluent dilution (> 10%) in treatments showed growth inhibitory effects.


Subject(s)
Amylases/metabolism , Biomass , Catalase/metabolism , Chlorophyll/metabolism , Chromium/toxicity , Germination/drug effects , Industrial Waste , Plant Roots/drug effects , Raphanus/drug effects , Seeds/drug effects , Tanning , Waste Disposal, Fluid , Water Pollutants, Chemical/toxicity , alpha-Amylases/metabolism , beta-Amylase/metabolism
6.
Indian J Exp Biol ; 2002 Sep; 40(9): 1060-6
Article in English | IMSEAR | ID: sea-57874

ABSTRACT

Mobilization of free sugars from vegetative tissues to grain and their transformation to starch in relation to activities of some relevant enzymes during growth and development were investigated in wheat (Triticum aestivum L.). Vegetative tissues, viz. flag-leaf, flag-leaf sheath, nodes and internodes contained high concentration of free sugars from 70 DAS to 18 DPA and that was in the order of accumulation--flag-leaf sheath> flag-leaf and internodes > nodes. In these tissues, major portion of 14C appeared in endogenous sucrose, irrespective of the nature of (U-14C]-sugars supplied. In photosynthetic structures above flag-leaf node, namely peduncle, rachis and bracts, the free sugar make-up was maximum at anthesis (90 DAS). Activity of soluble acid invertase (EC 3.2.1.26) was high in these tissues during early stages of grain growth but reverse was true for soluble neutral invertase (EC 3.2.1.27) activity. In apical and basal portions of grain, free sugars were more or less similarly distributed in concentration. Linear and rapid accumulation of starch in endosperm paralleled with a decline in accumulation of this polymer in pericarp-aleurone. In the latter tissue, the activities of starch hydrolyzing enzymes, i.e alpha- and beta-amylases (3.2.1.1 and 3.2.1.2) were high during initial stages of grain growth. During active grain-filling, alkaline inorganic pyrophosphatase (EC 3.6.1.1) seemed to play a vital role during starch accumulation in endosperm, whereas the involvement of 3-PGA phosphatase (EC 3.1.3.38) was almost confined to pericarp-aleurone. Impairement of ear head photosynthesis by shading depressed starch synthesis (approximately 50%) indicating, thereby, the significant role of current photosynthates during grain-filling. The results suggested that grain growth in wheat was influenced by an efficient operation of source as well as regulatory factors, including enzymes, constituting intrinsic potential of grain sink.


Subject(s)
Biotransformation , Carbohydrate Metabolism , Carbon Isotopes , Edible Grain/chemistry , Glycoside Hydrolases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Photosynthesis/drug effects , Pyrophosphatases/metabolism , Starch/metabolism , Sucrose/metabolism , Triticum/chemistry , alpha-Amylases/metabolism , beta-Amylase/metabolism , beta-Fructofuranosidase
SELECTION OF CITATIONS
SEARCH DETAIL